skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dillon, S J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work investigates the early stage evolution of thermally nucleated microbubbles in water using in situ high-speed, 400 fps, transmission electron microscopy. A Pt wire Joule heater induced bubble nucleation and growth from air-saturated water at different levels of power. For all powers below Pt breakdown, the dissolved gas initiates bubble nucleation at the concave surface defects adjacent to the area of highest temperature. A combination of interfacial forces and stress relaxation drive rapid migration of the bubbles away from the nucleation site. Thermocapillary forces ultimately dominate and drive their return to the region of highest temperature. The dynamic response highlights the importance of this length and time domain, which has until now received limited direct study. 
    more » « less
  2. The early stages of gas evolution during electrolytic hydrogen production on Au electrodes are characterized by in situ transmission electron microscopy. The results demonstrate that reaction product molecules initially dissolve into solution and then nucleate near, but not on, the electrodes. The gas subsequently wets the electrodes and its successive evolution is governed by triple phase boundary line motion. 
    more » « less